presentation
  access
  management
  job opportunities
  teaching resources
  publications
  contacts
  Morphogenesis, Signaling, Modeling
  Dynamics and Expression of plant Genomes
  Adaptation of Plants to the Environment
  Reproduction and Seeds
b
  Plant cell wall, function and utilization
  administrative team
  communication
  informatics
  workshop
  kitchen
  store
IJPB
blanc msm blanc deg blanc ape blancrg blancrg
blanc iNRA
présentation pôles laboratoires communs services communs intranet liens actualité
 

 

Meiosis mechanisms and apomixis
 presentation
 access
 contact
 research groups
 publications

Keywords : Meiosis, recombination, cell cycle, chromosome, apomixes

Doctoral school affiliation : ED 145 Sciences du végétal
 
Contacts :

Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech
Bâtiment 7
INRA Centre de Versailles-Grignon
Route de St-Cyr (RD10)
78026 Versailles Cedex France

tél : +33 (0)1 30 83 30 00 - fax : +33 (0)1 30 83 33 19


Raphaël Mercier
Senior Scientist

 

Laurence Cromer
Engineer


 

Cécile Larchevêque
Assistant ingénieur
du 01/09/2013 au 30/9/16

 

Christelle Taochy
post-doct
from 1/03/16 to 28/02/17

 

 

 

Victor Solier
Assistant ingénieur
du 1/3/16 au 28/2/19

 

 

 

 

 

 

 

Rajeev Kumar
Scientist

 

Sylvie Jolivet
Technician

 

Joiselle Fernandes
PhD student
from 1/10/14 to 30/9/17

 

Laia Capilla Pérez
Post-doctorant
du 1/3/16 au 28/2/19

 

 

 

 

Summary :

Meiosis:
Meiosis is an essential stage in the life cycle of sexually-reproducing organisms. Indeed, meiosis is the specialized cell division that reduces the number of chromosomes from two sets in the parent to one set in gametes, while fertilization restores the original chromosome number. Meiosis is also the stage of development when genetic recombination occurs, thus being the heart of Mendelian heredity. Increasing our knowledge on meiotic mechanisms, in addition to its intrinsic interest, would have also important implications for agriculture and medicine.

In the last decade Arabidopsis emerged as one of the prominent models in the field of meiosis. Indeed, the meiotic field benefits greatly from a multi-model approach with several kingdoms represented, highlighting both conserved mechanisms and variation around the theme. Arabidopsis emerged as a very good model to study meiosis, notably because of the possibility of large scale genetic studies and the wide range of molecular and cytological tools. Our projects aim to decipher meiotic mechanisms, including recombination, cell cycle and sister chromatid cohesion modifications, and their functional relationships.

Apomixis:
Apomixis results in progeny that are genetic clones of the maternal parent and thus is of great interest due to its potential revolutionary application in crop improvement. By introducing apomixis into sexual plants, any desired genotype, no matter how complex, could be perpetuated through successive seed generations. However, despite the occurrence of apomixis in over 400 species of angiosperms, very few crop species are apomictic and attempts to introduce this trait by crossing have failed. Our projects aim, via a better understanding of sexual reproduction processes, to de novo engineer apomixes in sexual plants

 

Main Results :

Can plants give up sex?

Plants producing 2n gametes and clonal seeds

Taming genetic recombination


Crossing over with Raphaël Mercier: the mechanics of meiosis

Mutations: A major discovery with mutant Arabidopsis: imitating apomixis

FANCM limits meiotic crossovers.

https://scholar.google.fr/citations?user=BKGJoo4AAAAJ&hl=fr

 

Selected Publications :

Séguéla-Arnaud M, Choinard S, Larchevêque C, Girard C, Froger N, Crismani W, Mercier R. (2016) RMI1 and TOP3a limit meiotic CO formation through their C-terminal domains. Nucleic Acids Res. Dec 13. pii: gkw1210. [Epub ahead of print] PMID: 27965412 (pdf)

Cifuentes, M., Jolivet, S., Cromer, L., et al. (2016) TDM1 Regulation Determines the Number of Meiotic Divisions. PLOS Genet., 12, e1005856. (pdf)

Girard, C., Chelysheva, L., Choinard, S., Froger, N., Macaisne, N., Lehmemdi, A., Mazel, J., Crismani, W. and Mercier, R. (2015) AAA-ATPase FIDGETIN-LIKE 1 and Helicase FANCM Antagonize Meiotic Crossovers by Distinct Mechanisms M. Lichten, ed. PLOS Genet., 11, e1005369. (pdf)

Mercier, R., Mézard, C., Jenczewski, E., Macaisne, N. and Grelon, M. (2015) The molecular biology of meiosis in plants. Annu. Rev. Plant Biol., 66, 297–327.

Portemer, V., Renne, C., Guillebaux, A. and Mercier, R. (2015) Large genetic screens for gynogenesis and androgenesis haploid inducers in Arabidopsis thaliana failed to identify mutants. Front. Plant Sci., 6,1–6. (pdf)

Séguéla-Arnaud, M., Crismani, W., Larchevêque, C., et al. (2015) Multiple mechanisms limit meiotic crossovers: TOP3a and two BLM homologs antagonize crossovers in parallel to FANCM. Proc. Natl. Acad. Sci. U. S. A., 112, 4713–4718.

Duroc, Y., Lemhemdi, A., Larcheveque, C., Hurel, A., Cuacos, M., Cromer, L., Armstrong, S.J., Chelysheva, L. and Mercier, R. (2014) The kinesin AtPSS1 promotes synapsis and is required for proper crossover distribution in meiosis. PLoS Genet., 10, e1004674. (pdf)

Girard, C., Crismani, W., Froger, N., Mazel, J., Lemhemdi, A., Horlow, C. and Mercier, R. (2014) FANCM-associated proteins MHF1 and MHF2, but not the other Fanconi anemia factors, limit meiotic crossovers. Nucleic Acids Res., 42, 9087–9095.

Cromer, L., Jolivet, S., Horlow, C., Chelysheva, L., Heyman, J., Jaeger, G. De, Koncz, C., Veylder, L. De and Mercier, R. (2013) Centromeric cohesion is protected twice at meiosis, by SHUGOSHINs at anaphase i and by PATRONUS at interkinesis. Curr. Biol., 23, 2090–2099.

Cifuentes, M., Rivard, M., Pereira, L., Chelysheva, L. and Mercier, R. (2013) Haploid meiosis in Arabidopsis: double-strand breaks are formed and repaired but without synapsis and crossovers. PLoS One,8, e72431. (pdf)


Jenczewski, E., Mercier, R., Macaisne, N., and Mezard, C. (2013) Meiosis: Recombination and the Control of Cell Division, in Plant Genome Diversity Volume 2 (Greilhuber, J., Dolezel, J., and Wendel, J. F., Eds.), pp 121–136. Springer Vienna, Vienna.Crismani, W., and Mercier, R. (2013) Plant Meiosis, Plant Meiosis (Pawlowski, W. P., Grelon, M., and Armstrong, S., Eds.), pp 227–234. Humana Press, Totowa, NJ.

Crismani, W., Portemer, V., Froger, N., Chelysheva, L., Horlow, C., Vrielynck, N. and Mercier, R. (2013) MCM8 Is Required for a Pathway of Meiotic Double-Strand Break Repair Independent of DMC1 in Arabidopsis thaliana. PLoS Genet., 9, e1003165. (pdf)

Crismani, W., Girard, C., and Mercier, R. (2013) Tinkering with meiosis., Journal of experimental botany 64, 55–6

Crismani W, Mercier R (2012) What limits meiotic crossovers? Cell cycle (Georgetown, Tex) 11: 3527–3528.

Eloy NB, Gonzalez N, Van Leene J, Maleux K, Vanhaeren H, et al. (2012) SAMBA, a plant-specific anaphase-promoting complex/cyclosome regulator is involved in early development and A-type cyclin stabilization. Proceedings of the National Academy of Sciences of the United States of America 109: 13853–13858.

Crismani W, Girard C, Froger N, Pradillo M, Santos JL, et al. (2012) FANCM limits meiotic crossovers. Science (New York, NY) 336: 1588–1590.

Cromer L, Heyman J, Touati S, Harashima H, Araou E, et al. (2012) OSD1 Promotes Meiotic Progression via APC/C Inhibition and Forms a Regulatory Network with TDM and CYCA1;2/TAM. PLoS genetics 8: e1002865. (pdf)

Crismani, W., and Mercier, R. (2013) Plant Meiosis, Plant Meiosis (Pawlowski, W. P., Grelon, M., and Armstrong, S., Eds.), pp 227–234. Humana Press, Totowa, NJ.

Crismani, W., Portemer, V., Froger, N., Chelysheva, L., Horlow, C., Vrielynck, N., and Mercier, R. (2013) MCM8 Is Required for a Pathway of Meiotic Double-Strand Break Repair Independent of DMC1 in Arabidopsis thaliana., PLoS genetics 9, e1003165.

Crismani, W., Girard, C., and Mercier, R. (2013) Tinkering with meiosis., Journal of experimental botany 64, 55–65

Crismani W, Mercier R (2012) What limits meiotic crossovers? Cell cycle (Georgetown, Tex) 11: 3527–3528.

Eloy NB, Gonzalez N, Van Leene J, Maleux K, Vanhaeren H, et al. (2012) SAMBA, a plant-specific anaphase-promoting complex/cyclosome regulator is involved in early development and A-type cyclin stabilization. Proceedings of the National Academy of Sciences of the United States of America 109: 13853–13858.

Crismani W, Girard C, Froger N, Pradillo M, Santos JL, et al. (2012) FANCM limits meiotic crossovers. Science (New York, NY) 336: 1588–1590.

Cromer L, Heyman J, Touati S, Harashima H, Araou E, et al. (2012) OSD1 Promotes Meiotic Progression via APC/C Inhibition and Forms a Regulatory Network with TDM and CYCA1;2/TAM. PLoS genetics 8: e1002865.

Crismani W, Girard C, Froger N, Pradillo M, Santos JL, Chelysheva L, Copenhaver GP, Horlow C, Mercier R. Science. 2012 Jun 22;336(6088):1588-90.

Macaisne N, Vignard J, Mercier R*. SHOC1 and PTD form an XPF-ERCC1-like complex that is required for formation of class I crossovers. J Cell Sci. 2011 15;124(Pt 16):2687-91.

Libeau P, Durandet M, Granier F, Marquis C, Berthomé R, Renou JP, Taconnat-Soubirou L, Horlow C. Gene expression profiling of Arabidopsis meiocytes.Plant Biol (Stuttg). 2011 Sep; 13(5):784-93

Marimuthu MP, Jolivet S, Ravi M, Pereira L, Davda JN, Cromer L, Wang L, Nogué F, Chan SW, Siddiqi I, Mercier R. Synthetic clonal reproduction through seeds. Science. 2011 Feb 18;331(6019):876.

d'Erfurth, I., Cromer, L, Jolivet, S, Girard, C, Horlow, C, Sun, Y, To, JP, Berchowitz, LE, Copenhaver, GP, and Mercier, R*. The cyclin-A CYCA1;2/TAM is required for the meiosis I to meiosis II transition and cooperates with OSD1 for the prophase to first meiotic division transition. PLoS Genet. 2010. e1000989. (pdf)

d'Erfurth I, Jolivet S, Froger N, Catrice O, Novatchkova M, Mercier R*. Turning Meiosis into Mitosis. PLoS Biol 2009. 7(6): e1000124. (pdf)

d'Erfurth I, Jolivet S, Froger N, Catrice O, Novatchkova M, Simon M, Jenczewski E, Mercier R*. Mutations in AtPS1 (Arabidopsis thaliana Parallel Spindle 1) Lead to the Production of Diploid Pollen Grains. PLoS Genet. 2008. 4(11):e1000274. (pdf)

Mercier R*, Jolivet S, Vignard J, Durand S, Drouaud J, Pelletier G, Nogue F*. Outcrossing as an Explanation of the Apparent Unconventional Genetic Behaviour of Arabidopsis thaliana hth Mutants. Genetics. 2008 Dec;180(4):2295-7. (pdf)

Macaisne N, Novatchkova M, Peirera L, Vezon D; Jolivet S., Froger N., Chelysheva L., Grelon M., Mercier R*. SHOC1, an XPF endonuclease-related protein, is essential for the formation of class I meiotic crossovers. Curr Biol, 2008 Sep 23;18(18):1432-7.

Higgins JD1, Vignard J1, Mercier R, Pugh AG, Franklin FC, Jones GH*. AtMSH5 partners AtMSH4 in the class I meiotic crossover pathway in Arabidopsis thaliana, but is not required for synapsis. Plant J. 2008 Jul;55(1):28-39.

Vignard J, Siwiec T, Chelysheva L, Vrielynck N, Gonord F, Armstrong SJ, Schlögelhofer P, R. Mercier* .The interplay of RecA-related proteins and the MND1-HOP2 complex during meiosis in Arabidopsis thaliana. PLoS Genet. 2007 Oct 12;3(10):1894-906. (pdf)

Jolivet S, Vezon D, Froger N and Mercier R*. Non conservation of the meiotic function of the Ski8/Rec103 homolog in Arabidopsis. Genes to cells 2006 Jun;11(6):615-22.

Kerzendorfer C1, Vignard J1, Pedrosa-Harand A., Siwiec T, Akimcheva S, Jollivet S, Sablowski R, Armstrong S, Schweizer D, Mercier R* and Schloegelhofer P*. The Arabidopsis thaliana MND1 homologue plays a key role in meiotic homologous pairing, synapsis and recombination. Journal of Cell Science. 2006 Jun 15;119(Pt 12):2486-96.

Chelysheva L, Diallo S, Vezon D, Gendrot G, Vrielynck N, Belcram K, Rocques N, Marquez-Lema A, Bhatt AM, Horlow C, Mercier R, Mezard C, Grelon M*. AtREC8 and AtSCC3 are essential to the monopolar orientation of the kinetochores during meiosis. Journal of Cell Science. 2005 15;118(Pt 20):4621-32.

Mercier R*, Jolivet S, Vezon D, Huppe E, Chelysheva L, Giovanni M, Nogue F, Doutriaux MP, Horlow C, Grelon M, Mezard C. Two meiotic crossover classes cohabit in Arabidopsis: one is dependent on MER3, whereas the other one is not. Current Biology 2005. 26;15(8):692-701. [37]

Mercier R*, SJ Armstrong, C Horlow, NP Jackson, CA Makaroff, D Vezon, G Pelletier, GH Jones and FC Franklin*. The meiotic protein SWI1 is required for axial element formation and recombination initiation in Arabidopsis. Development 2003 ;130(14):3309-18.

Mercier, R*., D. Vezon, E. Bullier, J.C. Motamayor, A. Sellier, F. Lefevre, G. Pelletier, and C. Horlow*. SWITCH1 (SWI1): a novel protein required for the establishment of sister chromatid cohesion and for bivalent formation at meiosis. Genes and Development 2001. 15:1859-1871. (pdf)


Review and other productions

Baarends W and Mercier R. Meeting point: Sister dancing at meiosis. EMBO Rep 2010. 11, 76-78.

Mercier R. Q&As. Current Biology, 2009 Dec 29;19(24):R1100-2.

Muyt AD, Mercier R, Mézard C, Grelon M*. Meiotic recombination and crossovers in plants. Genome Dyn. 2009;5:14-25.

Mercier R, Grelon M*. Meiosis in plants: ten years of gene discovery. Cytogenet Genome Res. 2008;120(3-4):281-90. [12]

-5- Mezard C, Vignard J, Drouaud J, Mercier R*. The road to crossovers: plants have their say. Trends Genet. 2007 Feb;23(2):91-9


 

Further Readings:

 

 

 

  

 


© INRA 2010
home IJPB