![]() |
presentation |
![]() |
JP Bourgin |
![]() |
access |
![]() |
management |
![]() |
job opportunities |
![]() |
teaching resources | ![]() |
publications |
![]() |
contacts |
![]() |
![]() |
Morphogenesis, Signaling, Modeling |
![]() |
Dynamics and Expression of plant Genomes |
![]() |
Adaptation of Plants to the Environment |
![]() |
Reproduction and Seeds |
![]() |
Plant cell wall, function and utilization |
![]() |
![]() |
administrative team |
![]() |
communication |
![]() |
informatics |
![]() |
![]() |
workshop |
![]() |
kitchen |
![]() |
store |
![]() |
![]() |
|
|
|
![]() |
![]() |
Mechanisms of Meiosis |
|
||||||||||||||||||||||||||||||||||||
Keywords
:
Meiosis, recombination, cell cycle, chromosome,
Arabidopsis thaliana, Physcomitrella patens, meiosis, meiotic
recombination,
mitotic recombination,
mismatch repair, gene targeting, mutants, polyploidy |
||||||||||||||||||||||||||||||||||||||
Doctoral school affiliation : ED 567 Sciences du Végétal | ||||||||||||||||||||||||||||||||||||||
Contacts :
Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech-ERL3559
CNRS tél : +33 (0)1 30 83 30 00 - fax : +33 (0)1 30 83 33 19 |
||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||
Summary :
We are addressing all these questions using Arabidopsis thaliana, oilseed rape (Brassica napus) and its diploid progenitors as well as Camelina sativa as main model species. Arabidopsis emerged as one of the prominent models in the field of meiosis notably because of the possibility to combine large-scale genetic studies and the wide range of molecular and cytological tools. Brassica napus and Camelina sativa are allopolyploid species related to Arabidopsis. Our projects aim to elucidate comprehensively the
mechanisms of meiosis. For this, we combine a whole set of state-of-the-art
genetic (most notably genetic screens), genomic, molecular biology, cytogenetic,
biochemistry and bio-informatic approaches. Our work contributes to a
better understanding of a key biological mechanism. Increasing our knowledge
on meiosis, in addition to its intrinsic interest, has also important
implications for agriculture and medicine. |
||||||||||||||||||||||||||||||||||||||
Main Results :
How To turn his loss into a win during complex genome species evolution? Can
plants give up sex?
|
||||||||||||||||||||||||||||||||||||||
Selected Publications :
Cifuentes, M., Jolivet, S., Cromer, L., et al. (2016) TDM1 Regulation Determines the Number of Meiotic Divisions. PLOS Genet., 12, e1005856. (pdf) Vrielynck N, Chambon A, Vezon D, Pereira
L, ChelyshevaL, De Muyt A, Mézard C, Mayer C, Grelon M. (2016).
A DNA topoisomerase VI-like complex initiates meiotic recombination. Science.351(6276):939-43.
doi: 10.1126/science.aad5196 (full
text) communiqué
de presse INRA Mercier R, Mézard C, Jenczewski E, Macaisne N, Grelon M. (2015). The Molecular Biology of Meiosis in Plants. Annu Rev Plant Biol 66: 297–327 (pubmed) Girard, C., Chelysheva, L., Choinard, S., Froger, N., Macaisne, N., Lehmemdi, A., Mazel, J., Crismani, W. and Mercier, R. (2015) AAA-ATPase FIDGETIN-LIKE 1 and Helicase FANCM Antagonize Meiotic Crossovers by Distinct Mechanisms M. Lichten, ed. PLOS Genet., 11, e1005369. (pdf) Mercier, R., Mézard, C., Jenczewski, E., Macaisne, N. and Grelon, M. (2015) The molecular biology of meiosis in plants. Annu. Rev. Plant Biol., 66, 297–327. Portemer, V., Renne, C., Guillebaux, A. and Mercier,
R. (2015) Large genetic screens for gynogenesis and androgenesis
haploid inducers in Arabidopsis thaliana failed to identify mutants.
Front. Plant Sci., 6,1–6. (pdf) Girard, C., Crismani, W., Froger, N., Mazel, J., Lemhemdi, A., Horlow, C. and Mercier, R. (2014) FANCM-associated proteins MHF1 and MHF2, but not the other Fanconi anemia factors, limit meiotic crossovers. Nucleic Acids Res., 42, 9087–9095. Jahns MT, Vezon D, Chambon A, Pereira L, Falque M, Martin OC, Chelysheva L, Grelon M. (2014). Crossover localisation is regulated by the neddylation posttranslational regulatory pathway. PLoS Biol. Aug 12;12(8):e1001930. doi: 10.1371/journal.pbio.1001930. (online) Lloyd, A.H., Ranoux, M., Vautrin, S., Glover, N., Fourment, J., Charif, D., Choulet, F., Lassalle, G., Marande, W., Tran, J., Granier, F., Pingault, L., Remay, A., Marquis, C., Belcram, H., Chalhoub, B., Feuillet, C., Berges, H., Sourdille, P. and Jenczewski, E. (2014) Meiotic gene evolution: can you teach a new dog new tricks? Mol Biol Evol, 31, 1724-1727 (PubMed) Grandont, L., Cunado, N., Coriton, O., Huteau, V., Eber, F., Chevre, A.M., Grelon, M., Chelysheva, L. and Jenczewski, E. (2014) Homoeologous Chromosome Sorting and Progression of Meiotic Recombination in Brassica napus: Ploidy Does Matter! The Plant cell, 26, 1448-1463 (Abstract) Jenczewski E, Mercier R, Macaisne N, and Mézard C. (2013). Meiosis: Recombination and the control of cell division. In: Plant Genome Diversity Volume 2: 121-136. Springer-Verlag. I.J. Leitch et al. (Eds) Grandont, L., Jenczewski, E. and Lloyd, A. (2013) Meiosis and its deviations in polyploid plants. Cytogenetic and genome research, 140, 171-184. Uanschou C, Ronceret A, Von Harder M, De Muyt A, Vezon D, Pereira L, Chelysheva L, Kobayashi W, Kurumizaka H, Schlögelhofer P, Grelon M. (2013). Sufficient amounts of functional HOP2/MND1 complex promote interhomolog DNA repair but are dispensable for intersister DNA repair during meiosis in Arabidopsis. Plant Cell 25(12):4924-40. doi: 10.1105/tpc.113.118521. (pubmed) Mézard C, Macaisne N, Grelon M (2013). La Méiose in La Reproduction Animale et Humaine. Editions Quae _ Éditions Cemagref, Cirad, Ifremer$ Jenczewski, E. (2013) Evolution: he who grabs too much loses all. Curr Biol, 23, R961-963 (pdf) Chelysheva L, Grandont L, Grelon M (2013). Immunolocalization of meiotic proteins in Brassicacae: method 1 in Plant Meiosis (eds : Pawlowski W Grelon M and Armstrong S). Series: Methods in Molecular Biology (Series Editor: John M. Walker) 990:93-101. (pubmed) Pawlowski, W.P.; Grelon, M; Armstrong, S (Eds.) (2013). Plant Meiosis, Methods and Protocols, Series: Methods in Molecular Biology, Vol. 990 XV, 238 p. 52 illus., 28 illus. in color. Humana Press Drouaud, J, Khademian, J., Giraut, L., and Mézard, C. (2013). Contrasted patterns of crossover and non crossover events at Arabidopsis thaliana meiotic recombination hotspots. PLos Gentics DOI: 10.1371/journal.pgen.1003922 (online) Cromer, L., Jolivet, S., Horlow, C., Chelysheva, L., Heyman, J., Jaeger, G. De, Koncz, C., Veylder, L. De and Mercier, R. (2013) Centromeric cohesion is protected twice at meiosis, by SHUGOSHINs at anaphase i and by PATRONUS at interkinesis. Curr. Biol., 23, 2090–2099.Cifuentes, M., Rivard, M., Pereira, L., Chelysheva, L.
and Mercier, R. (2013) Haploid meiosis in Arabidopsis:
double-strand breaks are formed and repaired but without synapsis and
crossovers. PLoS One,8, e72431. (pdf) Crismani, W., and Mercier, R. (2013) Plant Meiosis, Plant Meiosis (Pawlowski, W. P., Grelon, M., and Armstrong, S., Eds.), pp 227–234. Humana Press, Totowa, NJ. Crismani, W., Portemer, V., Froger, N., Chelysheva, L., Horlow, C., Vrielynck, N. and Mercier, R. (2013) MCM8 Is Required for a Pathway of Meiotic Double-Strand Break Repair Independent of DMC1 in Arabidopsis thaliana. PLoS Genet., 9, e1003165. (pdf) Crismani, W., Girard, C., and Mercier, R. (2013) Tinkering with meiosis., Journal of experimental botany 64, 55–6 Crismani W, Mercier R (2012) What limits meiotic crossovers? Cell cycle (Georgetown, Tex) 11: 3527–3528. Eloy NB, Gonzalez N, Van Leene J, Maleux K, Vanhaeren H, et al. (2012) SAMBA, a plant-specific anaphase-promoting complex/cyclosome regulator is involved in early development and A-type cyclin stabilization. Proceedings of the National Academy of Sciences of the United States of America 109: 13853–13858. Crismani W, Girard C, Froger N, Pradillo M, Santos JL, et al. (2012) FANCM limits meiotic crossovers. Science (New York, NY) 336: 1588–1590. Cromer L, Heyman J, Touati S, Harashima H, Araou E, et al. (2012) OSD1 Promotes Meiotic Progression via APC/C Inhibition and Forms a Regulatory Network with TDM and CYCA1;2/TAM. PLoS genetics 8: e1002865. (pdf) Yelina NE, Choi K, Chelysheva L, Macaulay M, De Snoo B, Wijnker E, Miller N, Drouaud J, Grelon M, Copenhaver GP, et al (2012). Epigenetic remodeling of meiotic crossover frequency in Arabidopsis thaliana DNA methyltransferase mutants. PLoS genetics 8: e1002844 (online) Chelysheva L, Vezon D, Chambon A, Gendrot G, Pereira L, Lemhemdi A, Vrielynck N, Le Guin S, Novatchkova M, Grelon M (2012). The Arabidopsis HEI10 is a new ZMM protein related to Zip3. PLoS genetics 8: e1002799 (online) Nicolas, S.D., Monod, H., Eber, F., Chevre, A.M. and Jenczewski, E. (2012) Non-random distribution of extensive chromosome rearrangements in Brassica napus depends on genome organization. Plant J, 70, 691-703 ( pdf) Giraut, L., Falque, M., Drouaud, J., Pereira, L., Martin, O.C., and Mézard, C. (2011). Genome-wide crossover distribution in Arabidopsis thaliana meiosis reveals sex specific patterns long chromosomes. PLos Gentics DOI: 10.1371/journal.pgen.1002354 (online) Jenczewski, E., Mercier, R., Macaisne, N., and Mézard, C. (2011). Meiosis : recombination and the control of cell division. Plant génome diversity, ed. J. Greilhuber, J. Wendel, I.J. Leitch and J. Dolezel. Springer-Verlag Wien New York, submitted Drouaud, J. and Mézard, C. Characterization of meiotic crossovers in pollen from Arabidopsis thaliana (2011). Methods Mol. Biol. 745:223-49. doi: 10.1007/978-1-61779-129-1_14. (pubmed) Macaisne N, Vignard J, Mercier R*. SHOC1
and PTD form an XPF-ERCC1-like complex that is required for formation
of class I crossovers. J Cell Sci. 2011 15;124(Pt of
cohesins, histones and MLH1.Cytogenetics and Genome Research. 129:143-153 M. Cifuentes, F. Eber, M.O. Lucas,
M. Lode, AM Chèvre and E. Jenczewski (2010) Repeated
polyploidy drove different levels of crossover suppression between homeologous
chromosomes in Brassica napus allohaploids. The Plant Cell 22:
2265-2276 (pdf)
E. Szadkowski, F. Eber, V. Huteau,
O. Coriton, M. Manzanares-Dauleux, R. Delourme, C. Huneau, B. Chalhoub,
E. Jenczewski and AM. Chèvre (2010) The first
meiosis in newly synthesized Brassica napus: a genome blender? The New
Phytologist 186(1):102-112 Pouilly N., R. Delourme, K. Alix and
E. Jenczewski (2008) Repetitive sequence-derived markers
tag centromeres and telomeres and provide insights into chromosome evolution
in Brassica napus. Chromosome Research 16: 686-700.
|
||||||||||||||||||||||||||||||||||||||
Further Readings:
|
||||||||||||||||||||||||||||||||||||||
© INRA 2010
home IJPB