presentation
  access
  management
  job opportunities
  teaching resources
  publications
  contacts
  Morphogenesis, Signaling, Modeling
  Dynamics and Expression of plant Genomes
  Adaptation of Plants to the Environment
  Reproduction and Seeds
b
  Plant cell wall, function and utilization
  administrative team
  communication
  informatics
  workshop
  kitchen
  store
IJPB
blanc msm blanc deg blanc ape blancrg blancrg
blanc iNRA
présentation pôles laboratoires communs services communs intranet liens actualité
 
Mechanisms of the meiotic recombination
 presentation
 access
 contact
 research groups
 publications

Keywords :Arabidopsis thaliana - Physcomitrella patens- meiosis - meiotic recombination - mitotic recombination- mismatch repair - gene targeting - mutants

Doctoral school affiliation : ED 145 Sciences du végétal
 
Contacts :

Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech
Bâtiment 7
INRA Centre de Versailles-Grignon
Route de St-Cyr (RD10)
78026 Versailles Cedex France

tél : +33 (0)1 30 83 30 00 - fax : +33 (0)1 30 83 33 19


Co Group Leader

Mathilde Grelon
Senior Scientist

Aurélie Chambon
Technician

Nathalie Vrielynck
Engineer

PhD student from 01/01/12

Nicolas Christophorou
Post-doc
from 1/2/15 to 31/12/16

Co Group Leader

Christine Mézard
Senior Scientist

Daniel Vezon
Assistant Engineer

Aurélie Hurel
Technician

 

 

 

Summary :

While events occurring during meiosis have been precisely described, the underlying mechanisms remain largely unknown. Major questions remain unanswered as: How and why the rate of meiotic recombination are so tightly controlled? How is controlled the position, the frequency and the type of meiotic recombination events (crossover (CO) or non-crossover (NCO))? What is the function of the synaptonemal complex? How homologous chromosomes recognize each other within a diploid nucleus?

In recent years, we have built a collection of more than 70 meiotic mutants, corresponding to thirty independent loci. This resource coupled with a description of the genome-wide recombination events provides us tools to address some of these issues. We are particularly interested in the study of certain key stages of meiotic recombination: the formation of DNA double strand breaks that initiate recombination, the localisation and distribution of CO and NCO events, the control of CO/NCO ratio, the various repair pathways of double-strand breaks.

 

Main Results :
Male and Female genetic maps of Arabidopsis thaliana chromosome

The structure of chromosome 4 is cartooned in the central panel. It is an acrocentric chromosome with a Nucleolar Organiser Region at the telomeric end of its short arm. The heterochromatic "knob" region is inverted between the two accessions Columbia and Landsberg erecta used for the genetic map.
The Female genetic map (lower panel) is 1.7 shorter than the Male map (upper panel). The comparison between the genetic and the physical maps demonstrates that at both ends of the map, Male recombination rate were higher whereas Female recombination rate were very low.
 
   
     
Class I crossover labelling by MLH1

The MLH1 protein was immunolocalised (green) on diakinesis bivalent from Arabidopsis thaliana counterstained with DAPI.
 
     
Forward genetic screen based on the identification of reduced fertility mutants

Arabidopsis mutants with reduced fertility can be easily scored on the basis of the small size of their fruits (arrows).
 
     

Meiotic recombination mutants

Several classes of mutants of meiotic recombination have been defined according their chromosome behaviour.

Wt: wild type plant metaphase : the five Arabidopsis bivalents can be identified. Each bivalent corresponds to a pair of homologous chromosomes (bivalent) linked together by chiasmata. Observed at the same stage mutants 1, 2 and 3 show either an absence of chiasma (1), a decrease in chiasma formation (2) or an intense fragmentation of their chromosomes (3).

 

 

 


Selected Publications :


Vrielynck N, Chambon A, Vezon D, Pereira L, ChelyshevaL, De Muyt A, Mézard C, Mayer C, Grelon M. (2016). A DNA topoisomerase VI-like complex initiates meiotic recombination. Science.351(6276):939-43. doi: 10.1126/science.aad5196 (full text) communiqué de presse INRA

Mézard C, Tagliaro Jahns M, Grelon M (2015). Where to cross? New insights into the location of meiotic crossovers. Trends Genet 1–9 (pubmed)

Mercier R, Mézard C, Jenczewski E, Macaisne N, Grelon M. (2015). The Molecular Biology of Meiosis in Plants. Annu Rev Plant Biol 66: 297–327 (pubmed)

Jahns MT, Vezon D, Chambon A, Pereira L, Falque M, Martin OC, Chelysheva L, Grelon M. (2014). Crossover localisation is regulated by the neddylation posttranslational regulatory pathway. PLoS Biol. Aug 12;12(8):e1001930. doi: 10.1371/journal.pbio.1001930. (online)

Jenczewski E, Mercier R, Macaisne N, and Mézard C. (2013). Meiosis: Recombination and the control of cell division. In: Plant Genome Diversity Volume 2: 121-136. Springer-Verlag. I.J. Leitch et al. (Eds)

Uanschou C, Ronceret A, Von Harder M, De Muyt A, Vezon D, Pereira L, Chelysheva L, Kobayashi W, Kurumizaka H, Schlögelhofer P, Grelon M. (2013). Sufficient amounts of functional HOP2/MND1 complex promote interhomolog DNA repair but are dispensable for intersister DNA repair during meiosis in Arabidopsis. Plant Cell 25(12):4924-40. doi: 10.1105/tpc.113.118521. (pubmed)

Mézard C, Macaisne N, Grelon M (2013). La Méiose in La Reproduction Animale et Humaine. Editions Quae _ Éditions Cemagref, Cirad, Ifremer

Chelysheva L, Grandont L, Grelon M (2013). Immunolocalization of meiotic proteins in Brassicacae: method 1 in  Plant Meiosis (eds : Pawlowski W Grelon M and Armstrong S). Series: Methods in Molecular Biology (Series Editor: John M. Walker) 990:93-101. (pubmed)

Pawlowski, W.P.; Grelon, M; Armstrong, S (Eds.) (2013). Plant Meiosis, Methods and Protocols, Series: Methods in Molecular Biology, Vol. 990 XV, 238 p. 52 illus., 28 illus. in color. Humana Press

Drouaud, J, Khademian, J., Giraut, L., and Mézard, C. (2013). Contrasted patterns of crossover and non crossover events at Arabidopsis thaliana meiotic recombination hotspots. PLos Gentics DOI: 10.1371/journal.pgen.1003922 (online)

Yelina NE, Choi K, Chelysheva L, Macaulay M, De Snoo B, Wijnker E, Miller N, Drouaud J, Grelon M, Copenhaver GP, et al (2012). Epigenetic remodeling of meiotic crossover frequency in Arabidopsis thaliana DNA methyltransferase mutants. PLoS genetics 8: e1002844 (online)

Chelysheva L, Vezon D, Chambon A, Gendrot G, Pereira L, Lemhemdi A, Vrielynck N, Le Guin S, Novatchkova M, Grelon M (2012). The Arabidopsis HEI10 is a new ZMM protein related to Zip3. PLoS genetics 8: e1002799 (online)

Giraut, L., Falque, M., Drouaud, J., Pereira, L., Martin, O.C., and Mézard, C. (2011). Genome-wide crossover distribution in Arabidopsis thaliana meiosis reveals sex specific patterns long chromosomes. PLos Gentics DOI: 10.1371/journal.pgen.1002354 (online)

Jenczewski, E., Mercier, R., Macaisne, N., and Mézard, C. (2011). Meiosis : recombination and the control of cell division. Plant génome diversity, ed. J. Greilhuber, J. Wendel, I.J. Leitch and J. Dolezel. Springer-Verlag Wien New York, submitted

Drouaud, J. and Mézard, C. Characterization of meiotic crossovers in pollen from Arabidopsis thaliana (2011). Methods Mol. Biol. 745:223-49. doi: 10.1007/978-1-61779-129-1_14. (pubmed)

Chelysheva L, Grandont L, Vrielynck N, le Guin S, Mercier R, Grelon M. (2010). An easy protocol for studying chromatin and recombination protein dynamics during Arabidopsis thaliana meiosis; immunodetecion of cohesins, histones and MLH1.Cytogenetics and Genome Research. 129:143-153

De Muyt A., Mercier R., Mézard C., Grelon M. (2009). Meiotic Recombination and Crossovers in Plants. Benavente R, Volff J-N (eds): Meiosis. Genome Dyn. Basel, Karger, vol 5, pp 14–25

De Muyt A., Pereira L., Vezon D., Chelysheva L ;, Gendrot G., Chambon A., Lainé-Choinard S., Pelletier G., Mercier R., Nogué F., Grelon M. (2009). A high throughput genetic screen identifies new early meiotic recombination functions in Arabidopsis thaliana. PLoS Genet. PLoS Genet. 2009 Sep;5(9):e1000654. Epub 2009 Sep 18. (online)

Chelysheva L, Vezon D, Belcram K, Gendrot G, Grelon M. (2008). The Arabidopsis BLAP75/Rmi1 homologue plays crucial roles in meiotic double-strand break repair. PLoS Genet. Dec;4(12):e1000309. (online)

Macaisne N, Novatchkova M, Peirera L, Vezon D, Jolivet S, Froger N, Chelysheva L, Grelon M, Mercier R (2008). SHOC1, an XPF Endonuclease-Related Protein, Is Essential for the Formation of Class I Meiotic Crossovers . Current Biology, 18 (18 ): 1432 - 1437 (pubmed)

Mercier R., Grelon M. (2008). Meiosis in plants: ten years of gene discovery. Cytogenetics and Genome Research. Reviews in Plant Cytogenetics. 120(3-4):281-290.

Lohmiller L. D., de Muyt A., Howard B., Offenberg H. H., Heyting C., Grelon M., Anderson L. K. (2008). Cytological analysis of Mre11 protein during early meiotic prophase I in Arabidopsis and tomato. Chromosoma. Jun;117(3):277-88

Drouaud, J., Mercier, R., Chelysheva, L., Bérard, A., Falque, M., Martin, O., Zanni, V., Brunel, D., and Mézard, C. (2007). Sex-specific crossover dstributions and variation in interference level along Arabidopsis thaliana chromosme 4. PLoS Genetics, (6) :e106 (online)

Falque, M., Mercier, R., Mézard C., De Vienne, D., and Martin O., (2007). Patterns of recombination and MLH1 foci density along mouse chromosomes : modeling effects of interference and obligate chiasma. Genetics, 176(3):1453-6 (pubmed)

Mézard, C., Vignard, J., Drouaud, J., and Mercier, R. (2007). The road to COs : plants have their word to say, Trends In Genetics 23, 91-99.

De Muyt A., Vezon D., Gendrot G., Gallois J.-L., Stevens R., Grelon M. (2007). AtPRD1 is required for meiotic double strand break formation in Arabidopsis thaliana. EMBO J. Sep 19; 26(18):4126-37 (pubmed)

Chelysheva L., Gendrot G., Vezon D., Doutriaux M.-P., Mercier R., Grelon M. (2007). Zip4/Spo22 is required for class I CO formation but not for synapsis completion in Arabidopsis thaliana. PLoS Genet. 2007 May 25;3(5):e83. (online)

Drouaud, J, Camilleri C., Bourguignon P-Y., Canaguier A., Bérard A., Vezon D., Giancola S., Brunel D., Colot V., Prum B., Quesneville H. and Mézard C. (2006). Variation in crossing over rates across the chromosome 4 of Arabidopsis thaliana reveals the presence of meiotic recombination "hot spots". Genome Research, 16, 106-114 (online)

Mézard, C. (2006). Meiotic recombination hot spots in plants, Bioch. Soc. Trans., 34, 531-534 (online)

Chelysheva L., Diallo S., Vezon D., Gendrot G., Vrielynck N., Belcram K., Rocques N., Márquez-Lema A., Bhatt A. M., Horlow C., Mercier R., Mézard C, Grelon M. (2005) AtREC8 and AtSCC3 are essential to the monopolar orientation of the kinetochores during meiosis. J. Cell Sci. Oct 15;118(Pt 20):4621-32 (online)

Mercier R, Jolivet S, Vezon D, Huppe E, Chelysheva L, Giovanni M, Nogue F, Doutriaux MP, Horlow C, Grelon M, Mezard C. (2005). Two meiotic crossover classes cohabit in Arabidopsis: one is dependent on MER3, whereas the other one is not. Curr Biol. Apr 26;15(8):692-701. (pubmed)

Stevens, R., Grelon, M., Vezon, D., Domenichini, S., Bergounioux, C. (2004) A cdc45 homologue in Arabidopsis thaliana has a role in meiosis as shown by RNAi induced gene silencing. Plant Cell., Jan;16(1):99-113. (pdf)

Grelon, M., Gendrot, G., Vezon, D., Pelletier, G. (2003). The Arabidopsis MEI1 gene encodes a protein with five BRCT domains that is involved in meiosis-specific DNA repair events independent of SPO11-induced DSBs. Plant J., 35 : 465-475. (pubmed)

Grelon M, Vezon D, Gendrot G, Pelletier G. (2001). AtSPO11-1 is neccessary for efficient meiotic recombination in plants. EMBO J. Feb 1;20(3):589-600. (online)

Mercier R, Grelon M, Vezon D, Horlow C, Pelletier G. (2001). How to characterize meiotic functions in plants? Biochimie. Nov-Dec;83(11-12):1023-8 (pubmed)

Further Readings: General publications

 

 

  

 


© INRA 2010
home IJPB