comité de direction
  offres d'emploi
  morphogenèse, signalisation, modélisation
  dynamique et expression des génomes
  adaptation des plantes à leur environnement
  reproduction et graines
  paroi végétale, fonction et usage
msm deg ape rg pave
présentation pôles Observatoire du Végétal services communs intranet liens actualité
Développement et qualité des graines

Mots-clés : Arabidopsis and brachypodium seeds, Embryo, endosperm, development and maturation, Fatty acids biosynthesis, regulation, Flavonoids, Proanthocyanidin, tannins, metabolism, oxidation, polymerisation, transport, functions, Gene expression, regulation, network, transcriptional, modelling
Integuments development, transparent testa, function, Metabolism, central, primary, secondary, Oil, biosynthesis, storage, oleosome , Seed development, maturation, biotechnology, Transcription factors, regulatory network, DNA-binding activity.

Ecole(s) doctorale(s) de rattachement : ED145 "Sciences du Végétal"

Contacts :

Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech-ERL3559 CNRS
INRA - Centre de Versailles-Grignon
Bâtiment 2
Route de Saint-Cyr (RD 10)
78026 Versailles Cedex France

tél : +33 (0)1 30 83 30 00 - fax : +33 (0)1 30 83 33 19

Loïc Lepiniec
Directeur de Recherche 75%

Sébastien Baud
Chargé de Recherche CNRS

Martine Miquel
Chargé de Recherche CNRS

Celine Boulard
Assistant Ingénieur

Sami Kazaz


Camille Salaun


Ahmed Aghoulas


Bertrand Dubreucq
Directeur de Recherche 90%

Massimiliano Corso
Chargé de Recherche


Alexandra To
Ingénieur d'étude

Johanne Thévenin
Assistant Ingénieur

Damaris Grain

Adjoint technique


Justine Rouffet
Ingénieur d'étude contractuel





Anciens membres
de l'équipe


Résumé :

From biological, agronomical, nutritional or industrial viewpoints the qualities of seeds are determined by the structure and quantity of various macromolecules stored in different seed tissues, namely the integuments, endosperm and embryo. Our goal is to characterize important functions and actors (i.e. genes and proteins) and the molecular mechanisms involved in the control of seed development. The main current projects focus on Arabidopsis seed maturation, oil biosynthesis and storage, and flavonoid metabolism (mainly in the integuments). A specific attention is paid to transcriptional regulations that have been shown to play key roles in seed development and provide interesting clues and tools for improving seed qualities.

Seeds have played a critical role in the evolution and dispersion of higher plants on earth. They allow most of the higher plants to cope with unfavourable environmental conditions by interrupting their life cycle and resuming growth when placed again under favourable conditions. Seeds have also some roles of the utmost importance for the human kind. First, they constitute the main vector for the improvement of agronomic practices and the management of genetic resources, two key factors for the development of sustainable agriculture and the preservation of biodiversity. Then, seeds are (directly or indirectly) the main source for human nutrition. Last, nowadays, seed storage compounds constitute a sustainable alternative to fossil carbon for chemical industry. For agronomic, nutritional or industrial purposes, it would be interesting to produce seeds that accumulate higher content of specific compounds/molecules (e.g. specific fatty acids, sugars, amino acids, vitamins, secondary metabolites) that are stored in various tissues (integuments, endosperm or embryo).

Although the main metabolic pathways involved in the synthesis of oils, starch, proteins or flavonoids are relatively well characterized, the regulation and distribution of fluxes between these pathways are not yet well understood. Similarly, the molecular and cellular mechanisms involved in the biogenesis of reserve organelles (oil and protein bodies) or flavonoid transport, modifications, and storage, remain poorly understood. Considerind that this knowledge may provide us with new molecular tools for the improvement of seed quality of crops, the understanding of the genetic and physiological controls of seed development and maturation constitutes a key area of research.

Tremendous progresses have been obtained during the last years working with crops species. Nevertheless, Arabidopsis thaliana remains a model plant of choice for studying seed biology, facilitating the basic research, and for drawing a comprehensive scheme of seed development and maturation. Extensive tools available for the genetic and molecular dissection of development and metabolism together with analytical and cytological procedures adapted to very small seeds have led to a good description of the biochemical pathways producing storage compounds.

Résultats marquants :

Our current objective is the identification and characterization of key functions and regulatory mechanisms that control seed development and maturation, and their role in seed biology. Our experimental strategy is mainly based on genetic and molecular analyses of (1) the metabolic pathways and cellular mechanisms that control the accumulation of storage compounds, and (2) the transcriptional regulatory network at stake in Arabidopsis seed. In both cases, we identify candidate genes and investigate their physiological functions by using genetics with biochemical, molecular and cytological analyses. In parallel, we start the analysis of the metabolic and regulatory networks occurring in other species such as Brachypodium, a model for cereal crops that accumulate storage compounds mainly in the endosperm. Last, we also contribute to the translation of the knowledge to crop species in association with other academic and private partners.

We carry out the functional analyses of enzymes, carriers or structural proteins involved in the metabolism and storage of fatty acids and oils (e.g. ACC1, PKp, BCCP, Oleosins or HSD1) or flavonoids (e.g. TT10, TT12, and TT15). We characterize their activities, spatio-temporal expression, and intracellular localization. The expression of corresponding genes requires a complex and robust coordination by developmental and physiological signals provided by different networks of transcription factors. We work mainly on the AFL network (i.e. ABI3-FUSCA3-LEC2) that controls embryo development and maturation and on the TT (TRANSPARENT TESTA) network (i.e. TT2-TT8-TTG1 complex, and TT1, TT16, or TTG2) that controls proanthocyanidin accumulation in the integuments. This level of regulation seems particularly interesting from both a cognitive point of view and for its potential applications. A set of specific tools and experiments is developed in planta, in yeast, and in vitro for the functional analyses of transcription factors. Ultimately, a comprehensive description of the molecular and physiological controls of seed development and maturation will allow building predictive models, providing molecular markers and tools for improving seed quality of crops.

Publications représentatives :

Fiume, E., Coen, O., Xu, W., Lepiniec, L. and Magnani, E. (2017) Growth of the sub-epidermal integument cell layers might require an endosperm signal. Plant Signal Behav, 0.

Coen, O., Fiume, E., Xu, W., De Vos, D., Lu, J., Pechoux, C., Lepiniec, L. and Magnani, E. (2017) Developmental patterning of the sub-epidermal integument cell layer in Arabidopsis seeds. Development, 144, 1490-1497.

Fatihi, A., Boulard, C., Bouyer, D., Baud, S., Dubreucq, B. and Lepiniec, L. (2016) Deciphering and modifying LAFL transcriptional regulatory network in seed for improving yield and quality of storage compounds. Plant Sci, 250, 198-204.

Kelemen, Z., Przybyla-Toscano, J., Tissot, N., Lepiniec, L. and Dubos, C. (2016) Fast and Efficient Cloning of Cis-Regulatory Sequences for High-Throughput Yeast One-Hybrid Analyses of Transcription Factors. Methods Mol Biol, 1482, 139-149.

Thevenin, J., Xu, W., Vaisman, L., Lepiniec, L., Dubreucq, B. and Dubos, C. (2016) The Physcomitrella patens System for Transient Gene Expression Assays. Methods Mol Biol, 1482, 151-161.

Troncoso-Ponce, M.A., Barthole, G., Tremblais, G., To, A., Miquel, M., Lepiniec, L. and Baud, S. (2016a) Transcriptional Activation of Two Delta-9 Palmitoyl-ACP Desaturase Genes by MYB115 and MYB118 Is Critical for Biosynthesis of Omega-7 Monounsaturated Fatty Acids in the Endosperm of Arabidopsis Seeds. Plant Cell, 28, 2666-2682.

Fiume, E., Guyon, V., Remoue, C., Magnani, E., Miquel, M., Grain, D. and Lepiniec, L. (2016) TWS1, a Novel Small Protein, Regulates Various Aspects of Seed and Plant Development. Plant Physiol, 172, 1732-1745.

Xu, W., Fiume, E., Coen, O., Pechoux, C., Lepiniec, L. and Magnani, E. (2016) Endosperm and Nucellus Develop Antagonistically in Arabidopsis Seeds. Plant Cell, 28, 1343-1360.

Troncoso-Ponce, M.A., Nikovics, K., Marchive, C., Lepiniec, L. and Baud, S. (2016b) New insights on the organization and regulation of the fatty acid biosynthetic network in the model higher plant Arabidopsis thaliana. Biochimie, 120, 3-8.

Baud, S., Kelemen, Z., Thevenin, J., Boulard, C., Blanchet, S., To, A., Payre, M., Berger, N., Effroy-Cuzzi, D., Franco-Zorrilla, J.M., Godoy, M., Solano, R., Thevenon, E., Parcy, F., Lepiniec, L. and Dubreucq, B. (2016) Deciphering the Molecular Mechanisms Underpinning the Transcriptional Control of Gene Expression by Master Transcriptional Regulators in Arabidopsis Seed. Plant Physiol, 171, 1099-1112.

Xu, W., Dubos, C. and Lepiniec, L. (2015) Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends Plant Sci, 20, 176-185.
Shen, Y., Devic, M., Lepiniec, L. and Zhou, D.X. (2015) Chromodomain, Helicase and DNA-binding CHD1 protein, CHR5, are involved in establishing active chromatin state of seed maturation genes. Plant Biotechnol J, 13, 811-820.

Kelemen, Z., Sebastian, A., Xu, W., Grain, D., Salsac, F., Avon, A., Berger, N., Tran, J., Dubreucq, B., Lurin, C., Lepiniec, L., Contreras-Moreira, B. and Dubos, C. (2015) Analysis of the DNA-Binding Activities of the Arabidopsis R2R3-MYB Transcription Factor Family by One-Hybrid Experiments in Yeast. PLoS One, 10, e0141044.

Barthole G, To A, Marchive C, Brunaud V, Soubigou-Taconnat L, Berger N, Dubreucq B, Lepiniec L, and Baud S (2014) MYB118 represses endosperm maturation in seeds of Arabidopsis, The Plant Cell, i26(9):3519-3537, doi 10.1105/tpc.114.130021 (Pubmed)

Marchive C, Nikovics K, To A, Lepiniec L and Baud S (2014) Transcriptional regulation of fatty acid production in higher plants: Molecular bases and biotechnological outcomes, Eur. J. Lipid Sci. Technol. 116, 1332-1343 (pdf)

Denay G, Creff, A, Moussu, S, Wagnon P, Thevenin J, Gerentes MF, Chambrier P, Dubreucq B and Ingram G (2014) Endosperm breakdown in Arabidopsis requires heterodimers of the basic helix-loop-helix proteins ZHOUPI and INDUCER OF CBP EXPRESSION. Development, 141, 1222-1227 (Pubmed).

Xu W, Lepiniec L, Dubos C (2014b) New insights toward the transcriptional engineering of proanthocyanidin biosynthesis. Plant Signaling & Behavior 9(4), in press (Pubmed)

Aymé L, Baud S, Dubreucq B, Joffre F, and Chardot T (2014) Function and Localization of the Arabidopsis thaliana Diacylglycerol Acyltransferase DGAT2 Expressed in Yeast, PlosONe, DOI: 10.1371/journal.pone.0092237 (online)

Miquel M, Trigui G, d'Andréa S, Kelemen Z, Baud S, Berger A, Deruyffelaere C, Trubuil A, Lepiniec L, Dubreucq B. (2014) Specialization of oleosins in oil body dynamics during seed development in Arabidopsis seeds. Plant Physiol 164, 4,1866-1878 (Pubmed)

Dubos C, Kelemen Z, Sebastian A, Huep G, Xu W, Grain D, Salsac F, Brousse C, Lepiniec L,Weisshaar B, Contreras-Moreira B, Bülow L, Hehl R. (2014) Integrating bioinformatic resources to predict transcription factors interacting with cis-sequences conserved in co-regulated genes. BMC Genomics 15:317 (Pubmed)

Xu W, Grain D, Bobet S, Le Gourrierec J, Thévenin J, Kelemen Z, Lepiniec L, Dubos C. (2014a) Complexity and robustness of the flavonoid transcriptional regulatory network revealed by comprehensive analyses of MYB-bHLH-WDR complexes and their targets, in Arabidopsis seed. New Phytologist 202: 132-144 (Pubmed)

Xu, W., Grain, D., Le Gourrierec, J., Harscoet, E., Berger, A., Jauvion, V., Scagnelli, A., Berger, N., Bidzinski, P., Kelemen, Z., Salsac, F., Baudry, A., Routaboul, J.M., Lepiniec, L., and Dubos, C. (2013). Regulation of flavonoid biosynthesis involves an unexpected complex transcriptional regulation of TT8 expression, in Arabidopsis. New Phytol 198, 59-70 (IF 6.645) (Pubmed)

Schaart JG, Dubos C, Romero De La Fuente I, van Houwelingen AM, de Vos RC, Jonker HH, Xu W, Routaboul JM, Lepiniec L, Bovy AG. (2013) Identification and characterization of MYB-bHLH-WD40 regulatory complexes controlling proanthocyanidin biosynthesis in strawberry (Fragaria × ananassa) fruits. New Phytol.197(2):454-67

To A, Joubès J, Barthole G, Lécureuil A, Scagnelli A, Jasinski S, Lepiniec L, Baud S. (2012) WRINKLED Transcription Factors Orchestrate Tissue-Specific Regulation of Fatty Acid Biosynthesis in Arabidopsis. The Plant Cell (12):5007-5023 (pdf)

Jasinski S, Lécureuil A, Miquel M, Loudet O, Raffaele S, Froissard M, Guerche P (2012) Natural variation in seed very long chain fatty acid content is controlled by a new isoform of KCS18 in Arabidopsis thaliana. PLoS ONE 7: e49261. doi:10.1371/journal.pone.0049261 (online)

Thévenin, J., Dubos, C., Xu, W., Le Gourrierec, J., Kelemen, Z., Charlot, F., Nogue, F., Lepiniec, L., and Dubreucq, B. (2012). A new system for fast and quantitative analysis of heterologous gene expression in plants. New Phytol 193, 504-512 (Pubmed)

Routaboul, J.M., Dubos, C., Beck, G., Marquis, C., Bidzinski, P., Loudet, O., and Lepiniec, L. (2012). Metabolite profiling and quantitative genetics of natural variation for flavonoids in Arabidopsis. J Exp Bot. (Pubmed)

Guillon, F., Larre, C., Petipas, F., Berger, A., Moussawi, J., Rogniaux, H., Santoni, A., Saulnier, L., Jamme, F., Miquel, M., Lepiniec, L., and Dubreucq, B. (2012). A comprehensive overview of grain development in Brachypodium distachyon variety Bd21. J Exp Bot 63, 739-755 (online)

Cubillos, F.A., Yansouni, J., Khalili, H., Balzergue, S., Elftieh, S., Martin-Magniette, M.L., Serrand, Y., Lepiniec, L., Baud, S., Dubreucq, B., Renou, J.P., Camilleri, C., and Loudet, O. (2012). Expression variation in connected recombinant populations of Arabidopsis thaliana highlights distinct transcriptome architectures. BMC Genomics 13, 117 (online)

Berger, N., and Dubreucq, B. (2012). Evolution goes GAGA: GAGA binding proteins across kingdoms. Biochimica et biophysica acta (Pubmed)

Barthole, G., Lepiniec, L., Rogowsky, P.M., and Baud, S. (2012). Controlling lipid accumulation in cereal grains. Plant science : an international journal of experimental plant biology 185-186, 33-39 (Pubmed)

Pouvreau, B., Baud, S., Vernoud, V., Morin, V., Py, C., Gendrot, G., Pichon, J.P., Rouster, J., Paul, W., and Rogowsky, P.M. (2011). Duplicate maize Wrinkled1 transcription factors activate target genes involved in seed oil biosynthesis. Plant Physiol 156, 674-686 (Pubmed)

Berger, N., Dubreucq, B., Roudier, F., Dubos, C., and Lepiniec, L. (2011). Transcriptional regulation of Arabidopsis LEAFY COTYLEDON2 involves RLE, a cis-element that regulates trimethylation of histone H3 at lysine-27. Plant Cell 23, 4065-4078 (Pubmed)

Baud S, Feria Bourrellier AB, Azzopardi M, Berger A, Dechorgnat J, Daniel-Vedele F, Lepiniec L, Miquel M, Rochat C, Hodges M, Ferrario-Méry S. (2010) PII is induced by WRINKLED1 and fine-tunes fatty acid composition in seeds of Arabidopsis thaliana. Plant J. 64(2):291-303 (Pubmed)

Harscoët E, Dubreucq B, Palauqui JC, Lepiniec L. NOF1 Encodes an Arabidopsis Protein Involved in the Control of rRNA Expression (2010) PLoS One. 2010 Sep 20;5(9):e12829 (online)

Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci. 2010 Oct;15(10):573-81 (Pubmed)

Baud S, Lepiniec L. (2010) Physiological and developmental regulation of seed oil production. Prog Lipid Res. 2010 Jul;49(3):235-49 (Pubmed)

North H, Baud S, Debeaujon I, Dubos C, Dubreucq B, Grappin P, Jullien M, Lepiniec L, Marion-Poll A, Miquel M, Rajjou L, Routaboul JM, Caboche M.(2010) Arabidopsis seed secrets unravelled after a decade of genetic and omics-driven research. Plant ; 61(6):971-81(Pubmed)

Baud S, Wuillème S, To A, Rochat C, Lepiniec L.(2009) Role of WRINKLED1 in the transcriptional regulation of glycolytic and fatty acid biosynthetic genes in Arabidopsis. Plant J ;60(6):933-47. (Pubmed)

Baud S, Dichow NR, Kelemen Z, d'Andréa S, To A, Berger N, Canonge M, Kronenberger J, Viterbo D, Dubreucq B, Lepiniec L, Chardot T, Miquel M.(2009) Regulation of HSD1 in seeds of Arabidopsis thaliana. Plant Cell Physiol ;50(8):1463-78. (Pubmed)

Nesi N, Lucas MO, Auger B, Baron C, Lécureuil A, Guerche P, Kronenberger J, Lepiniec L, Debeaujon I, Renard M.(2009) The promoter of the Arabidopsis thaliana BAN gene is active in proanthocyanidin-accumulating cells of the Brassica napus seed coat. Plant Cell Rep r;28(4):601-17. (Pubmed)

Baud S, Lepiniec L.(2009) Regulation of de novo fatty acid synthesis in maturing oilseeds of Arabidopsis. Plant Physiol Biochem. 2009 Jun;47(6):448-55.(Pubmed)

Berdasco M, Alcázar R, García-Ortiz MV, Ballestar E, Fernández AF, Roldán-Arjona T, Tiburcio AF, Altabella T, Buisine N, Quesneville H, Baudry A, Lepiniec L, Alaminos M, Rodríguez R, Lloyd A, Colot V, Bender J, Canal MJ, Esteller M, Fraga MF.(2008) Promoter DNA hypermethylation and gene repression in undifferentiated Arabidopsis cells.PLoS One.1;3(10):e3306.PMID.(Pubmed)

Rajjou L, Debeaujon I (2008) Seed longevity: Survival and maintenance of high germination ability of dry seeds. CR Biologies (in press) DOI

Dubos C, Le Gourrierec J, Baudry A, Huep G, Lanet E, Debeaujon I, Routaboul J-M, Alboresi A, Weisshaar B, Lepiniec L (2008) MYBL2 is a new regulator of flavonoid biosynthesis in Arabidopsis thaliana. The Plant Journal (PubMed)

Luceri C, Giovannelli L, Pitozzi V, Toti S, Castagnini C, Routaboul JM, Lepiniec L, Larrosa M, Dolara P. (2008) Liver and Colon DNA oxidative damage and gene expression profiles of rats fed Arabidopsis thaliana mutants seed containing contrasted flavonoid contents, Food Chem Toxicol. 46, 1213-1220 (PubMed)

Baud S, Lepiniec L (2008) Compared analysis of the regulatory systems controlling lipogenesis in hepatocytes of mice and in maturing oilseeds of Arabidopsis. C. R. Biologies, 331, 737-745 DOI

Purkrtova Z, Jolivet P, Miquel M, Chardot T (2008) Structure and function of seed lipid body-associated proteins. C. R. Biologies, 331, 746-754 DOI

Angeles Nunez JG, Kronenberger J, Wuillème S, Lepiniec L, Rochat C (2008) Study of AtSUS2 localization in seeds reveals a strong association with plastids. Plant Cell Physiol. 49, 1621-1626

Bach L, Michaelson LV, Haslam R, Bellec Y, Gissot L, Marion J, Da Costa M, Boutin JP, Miquel M, Tellier F, Domergue F, Markham J, Beaudoin F, Napier J, Faure JD (2008) The plant very long chain hydroxy fatty Acyl-CoA dehydratase PASTICCINO2 is essential and limiting for plant development. Proc. Natl Acad. Sci. U.S.A. 105, 14727-14731

Santos-Mendoza M, Dubreucq B, Baud S, Parcy F, Caboche M, Lepiniec L. (2008) Deciphering gene regulatory networks that control seed development and maturation in Arabidopsis. Plant J. 54, 608-20 (PubMed)

Truernit E, Bauby H, Dubreucq B, Grandjean O, Runions J, Barthélémy J, Palauqui JC. (2008) High-resolution whole-mount imaging of three-dimensional tissue organization and gene expression enables the study of Phloem development and structure in Arabidopsis. Plant Cell 20,1494-503 (PubMed)

Marinova K, Pourcel L, Weder B, Schwarz M, Barron D, Routaboul JM, Debeaujon I, Klein M. (2007) The Arabidopsis MATE transporter TT12 acts as a vacuolar flavonoid/H+ -antiporter active in proanthocyanidin-accumulating cells of the seed coat. Plant Cell. 19, 2023-2038 (PubMed)

Pourcel L, Routaboul JM, Cheynier V, Lepiniec L, Debeaujon I. (2007) Flavonoid oxidation in plants: from biochemical properties to physiological functions. Trends Plant Sci. 12, 29-36 (PubMed)

Baud S, Mendoza MS, To A, Harscoët E, Lepiniec L, Dubreucq B. (2007a) WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis. Plant J. 50, 825-838. (PubMed)

Baud S, Wuillème S, Dubreucq B, de Almeida A, Vuagnat C, Lepiniec L, Miquel M, Rochat C. (2007b) Function of plastidial pyruvate kinases in seeds of Arabidopsis thaliana. Plant J. 52, 405-419. (PubMed)

d'Andréa S, Canonge M, Beopoulos A, Jolivet P, Hartmann MA, Miquel M, Lepiniec L, Chardot T. (2007) At5g50600 encodes a member of the short-chain dehydrogenase reductase superfamily with 11beta- and 17beta-hydroxysteroid dehydrogenase activities associated with Arabidopsis thaliana seed oil bodies. Biochimie 89, 222-229. (PubMed)

Kerhoas L, Aouak D, Cingöz A, Birlirakis N, Routaboul JM, Lepiniec L, Einhorn J (2006) Structural characterization of the major flavonoid glycosides from Arabidopsis thaliana seeds, Agric. Food. Biochem. 54, 6603-12 (PubMed)

Baudry A, Caboche M, Lepiniec L (2006) TT8 controls its own expression in a feedback regulation involving TTG1 and homologous MYB and bHLH factors, allowing a strong and cell-specific accumulation of flavonoids in Arabidopsis thaliana. Plant J, 46, 768-779 (PubMed)

Lepiniec L, Debeaujon I, Routaboul JM, Baudry A, Pourcel L, Nesi N, Caboche M (2006) Genetics and Biochemistry of Seed Flavonoids. Annu Rev Plant Biol 57, 405-430 (PubMed)

Routaboul JM, Kerhoas L, Debeaujon I, Pourcel L, Caboche M, Einhorn J, Lepiniec L (2006) Flavonoid diversity and biosynthesis in seed of Arabidopsis thaliana. Planta, 224, 96-107 (PubMed)

Pourcel L, Routaboul JM, Kerhoas L, Caboche M, Lepiniec L and Debeaujon I (2005) TRANSPARENT TESTA10 encodes a laccase-like enzyme involved in oxidative polymerization of flavonoids in Arabidopsis seed coat. Plant Cell, 17, 2966-2980 (PubMed)

Baud S, Wuilleme S, Lemoine R, Kronenberger J, Caboche M, Lepiniec L, Rochat C (2005) The AtSUC5 sucrose transporter specifically expressed in the endosperm is involved in early seed development in Arabidopsis. Plant J 43, 824-836. (PubMed)

Djemel N, Guedon D, Lechevalier A, Salon C, Miquel M, Prosperi J, Rochat C, Boutin JP (2005) Development and composition of the seeds of 9 genotypes of the Medicago truncatula species complex. Plant Physiol Biochem 43, 557-566. (PubMed)

Santos Mendoza M, Dubreucq B, Miquel M, Caboche M, Lepiniec L (2005) LEAFY COTYLEDON 2 activation is sufficient to trigger the accumulation of oil and seed specific mRNAs in Arabidopsis leaves. FEBS 579, 4666-4670. (PubMed)

Baud S, Bellec Y, Miquel M, Bellini C, Caboche M, Lepiniec L, Faure JD, Rochat C (2004) Gurke and Pasticcino3 mutants affected in embryo development are impaired in acetyl-CoA carboxylase. EMBO Reports 5, 515-520. (PubMed)

Baud S, Vaultier MN, Rochat C (2004) Structure and expression profile of the sucrose synthase multigene family in Arabidopsis. J Exp Bot 55, 397-409. (PubMed)

Baudry A, Heim MA, Dubreucq B, Caboche M, Weisshaar B, Lepiniec L (2004) TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. Plant J., 39, 366-380. (PubMed)

Debeaujon I., N. Nesi, P.Perez, M. Devic, O. Grandjean, M. Caboche, and Lepiniec L (2003) Proanthocyanidin-Accumulating Cells in Arabidopsis Testa: Regulation of Differentiation and Role in Seed Development. Plant Cell, 15, 2514-31. (PubMed)

Lepiniec L., Thomas M., and Vidal J. (2003) From enzyme activity to plant biotechnology: 30 years of research on phosphoenolpyruvate carboxylase. Plant Physiol. Biochem. 41, 533-539.

Nesi N., Debeaujon I., Jond C., Stewart A.J., Jenkins G.I., CabocheM. and Lepiniec L. (2002) The TRANSPARENT TESTA16 Locus Encodes the ARABIDOPSIS BSISTER MADS Domain Protein and Is Required for Proper Development and Pigmentation of the Seed Coat. Plant Cell, 14, 2463-2479. (PubMed)

Steinborn K., Maulbetsch C., Priester B., Trautmann S., Pacher T., Geiges B., Küttner F., Lepiniec L., Stierhof Y-D., Schwarz H., Jürgens G. and Mayer U. (2002) The Arabidopsis PILZ group genes encode tubulin-folding cofactor orthologs required for cell division but not cell growth. Genes and development, 16, 959–971 (PubMed)

Nesi N., Jond C., Debeaujon I., Caboche M. and Lepiniec L. (2001) The Arabidopsis TT2 Gene Encodes an R2R3 MYB Domain Protein That Acts as a Key Determinant for Proanthocyanidin Accumulation in Developing Seed. Plant Cell, 13, 2099-2114 (PubMed)

Nesi N., Debeaujon I., Jond C., Pelletier G., Caboche M. and Lepiniec L. (2000) The TT8 Gene Encodes a Basic Helix-Loop-Helix Domain Protein Required for Expression of DFR and BAN Genes in Arabidopsis Siliques. Plant Cell, 12, 1863-1878 (PubMed)

Baud S, Guyon V, Kronenberger J, Wuillème S, Miquel M, Caboche M, Lepiniec L, Rochat C (2003) Multifunctional acetyl-CoA carboxylase1 is essential for very long chain fatty acid elongation and embryo development in Arabidopsis. Plant J 33, 75-86. (PubMed)

Baud S., Boutin J.P., Miquel M., Lepiniec L. and Rochat C (2002) An integrated overview of seed development in Arabidopsis thaliana ecotype WS. Plant Physiol Biochem 40, 151­160.

Brunaud V, Balzergue S, Dubreucq B, Aubourg S, Samson F, Chauvin S, Bechtold N, Cruaud C, De Rose R, Pelletier G, Lepiniec L, Caboche M, Lecharny A (2002) T-DNA integration into the Arabidopsis genome depends on sequences of pre-insertion sites. EMBO Reports 3, 1152-1157. (PubMed)

Buchner P, Rochat C, Wuillème S, Boutin JP (2002) Characterization of a tissue-specific and developmentally regulated b-1,3-glucanase gene in pea (Pisum sativum) Plant Mol Biol 49: 171-186. (PubMed)

Samson F, Brunaud V, Balzergue S, Dubreucq B, Lepiniec L, Pelletier G, Caboche M, Lecharny A (2002) FLAGdb/FST: a database of mapped flanking insertion sites (FSTs) of Arabidopsis thaliana T-DNA transformants. Nucleic Acid Res 30, 94-97. (PubMed)

Shen W-H, Parmentier Y, Hellmann H, Lechner E, Dong A, Masson J, Granier F, Lepiniec L, Estelle M, Genschik P (2002) Null Mutation of AtCUL1 Causes Arrest in Early Embryogenesis in Arabidopsis. Mol Biol Cell 13, 1916­1928. (PubMed)

Sørensen M, Mayer U, Lukowitz W, Robert H, Chambrier P, Jürgens G, Somerville C, Lepiniec L, Berger F (2002) Cellularisation in the endosperm of Arabidopsis thaliana is coupled to mitosis and shares multiple components with cytokinesis. Development 129, 5567-5576. (PubMed)

Steinborn K, Maulbetsch C, Priester B, Trautmann S, Pacher T, Geiges B, Küttner F, Lepiniec L, Stierhof YD, Schwarz H, Jürgens G, Mayer U (2002) The Arabidopsis PILZ group genes encode tubulin-folding cofactor orthologs required for cell division but not cell growth Genes Dev 16, 959­971. (PubMed)

Stone S, Kwong L, Matsudaira Yee K, Pelletier J, Lepiniec L, Fischer RL, Goldberg RB, and Harada JJ (2001) LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development. Proc Natl Acad Sci USA, 98, 11806­11811. (PubMed)

Balzergue S, Dubreucq B, Chauvin S, Le-Clainche I, Le Boulaire F, de Rose R., Samson F, Biaudet V, Lecharny A, Cruaud C, Weissenbach J, Caboche M, Lepiniec L (2001) Improved PCR-walking for large scale isolation of plant T-DNA borders. Biotechniques 30, 496-504. (PubMed)

Boisson M, Gomord V, Audran C, Berger N, Dubreucq B, Granier F, Lerouge P, Faye L, Caboche M, Lepiniec L (2001) Arabidopsis glucosidase I mutants reveal a critical role of N-glycan trimming in seed development. EMBO J 20, 1010-1019. (PubMed)

Dubreucq B, Berger N, Vincent E, Boisson M, Pelletier G, Caboche M, Lepiniec L (2000) The Arabidopsis AtEPR1 extensin-like gene is specifically expressed in endosperm during seed germination. Plant J 23, 643-652. (PubMed)

Synthèses scientifiques


Lepiniec L, Thomas M, and Vidal J (2003) From enzyme activity to plant biotechnology: 30 years of research on phosphoenolpyruvate carboxylase. Plant Physiol Biochem 41, 533-539.

Chapitres d’ouvrages


Baud S, Dubreucq B, Miquel M, Rochat C, Lepiniec L (2008) Storage reserve accumulation in Arabidopsis: Metabolic and developmental control of seed filling. In The Arabidopsis book, American Society of Plant Physiologists (ed.), USA


Dubreucq B, Grappin P, Miquel M., North N, Rochat C, Jullien M (2001) Approches moléculaires de la qualité et du développement des graines. Oléagineux, Corps Gras, Lipides 8: 487- 495.


© INRA 2010
retour page d'accueil IJPB