![]() |
généralités |
![]() |
JP Bourgin |
![]() |
accès |
![]() |
comité de direction |
![]() |
offres d'emploi |
![]() |
enseignements | ![]() |
publications |
![]() |
Contacts |
![]() |
![]() |
morphogenèse, signalisation, modélisation |
![]() |
dynamique et expression des génomes |
![]() |
adaptation des plantes à leur environnement |
![]() |
reproduction et graines |
![]() |
paroi végétale, fonction et usage |
![]() |
![]() |
secrétariat |
![]() |
communication |
![]() |
informatique |
![]() |
![]() |
atelier |
![]() |
laverie |
![]() |
magasin |
![]() |
![]() |
|
|
|
![]() |
Actualités
Symposium
IJPB 2018
L’Institut Jean-Pierre Bourgin
(IJPB) couvre un champ d'activité qui s'étend de travaux
fondamentaux sur le développement, la génétique
et la physiologie des plantes jusqu'à la recherche finalisée
pour l’utilisation alimentaire et non-alimentaire des produits
végétaux, dans le cadre d’une agriculture durable.
contacts
Comité local d’organisation
:
Corine Enard (Institut Jean-Pierre Bourgin (IJPB), Versailles),
Maria-Jesus
Lacruz (IJPB, Versailles), Philippe Poré (INRA, Versailles)
et Stéphane
Raude (IJPB, Versailles)
21 novembre 2017 Séminaires Mitochondria serve as principal sites for cellular energy metabolism and play pivotal roles in the biosynthesis of many essential metabolites for the (plant) cell. As dependences of a free-living organism, mitochondria contain their own genome, the mtDNA. Plant mitochondria are remarkable with respect to the presence of numerous group II introns. The removal of the introns from the coding sequences is essential for respiratory functions.While the splicing of group II introns in vivo is facilitated by maturase factors, canonical group II introns are catalytic RNAs that are able to excise themselves from their pre-RNA hosts in vitro, in the absence of the protein cofactors, using a mechanism identical to that utilized by the spliceosome. Structural analyses and phylogenetic data may indicate that the spliceosomal RNAs have evolved from group II intron-related ancestors. Yet, it remains unclear how could such general players in spliceosomal splicing evolve from the monospecific bacterial systems (i.e. a group II intron RNAs and their highly specific intron-encoded maturase factors). Analysis of the organellar splicing machinery in plants may provide us with important clues into the evolution of the nuclear splicing machineries. The ability of the mitochondrial maturases in plants to act on different intron targets further support the notion that the early organellar self-splicing and mobile group II RNAs spread in the eukaryotic genomes and later ‘degenerated’ into the universal splicing system, known as the spliceosome. The similarities between maturases and the core spliceosomal factor, Prp8, may support this intriguing hypothesis. Oren
Ostersetzer-Biran webpage ___________________________________________________ Invité par : céline Masclaux-Daubresse ___________________________________________________ Invité par : Herman Höfte Plant shoots harbor stem cells throughout the life of the plant maintained via a gene regulatory feedback network. Perturbations to these regulatory genes lead to changes in the size and shape of the stem cell niche. Similar effects can be achieved by perturbing the cell walls and heterogeneous and anisotropic mechanical wall properties need to be regulated to generate correct form. We use a Computational Morphodynamics approach, combining live imaging and models of cell wall mechanics and gene networks, to understand how growth and differentiation is coordinated. In this talk I will discuss how mechanical patterning can overlap with gene expression patterns, and how cell size and tissue size can influence the maintenance of the stem cell niche. Hendrik
Jönsson webpage Date
limite d'inscription obligatoire jusqu'au 10/05/18 ____________________________________________ |
© INRA 2010
retour page d'accueil IJPB