généralités
  accès
  comité de direction
  offres d'emploi
  enseignements
  publications
  Contacts
  morphogenèse, signalisation, modélisation
  dynamique et expression des génomes
  adaptation des plantes à leur environnement
  reproduction et graines
  paroi végétale, fonction et usage
  secrétariat
  communication
  informatique
  atelier
  laverie
  magasin
IJPB
msm deg ape rg pave
iNRA
présentation pôles Observatoire du Végétal services communs intranet liens actualité
 
Mécanismes de la méiose
 généralités
 accès
 contact
 équipes
 publications

Mots-clés : méiose, recombinaison, cycle cellulaire, chromosome, apomixie

 

Ecole(s) doctorale(s) de rattachement :ED 145 Sciences du végétal
 
Contacts :

Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech
Bâtiment 7
INRA Centre de Versailles-Grignon
Route de St-Cyr (RD10)
78026 Versailles Cedex France

tél : +33 (0)1 30 83 30 00 - fax : +33 (0)1 30 83 33 19


   

Responsable

Raphaël Mercier
Directeur de recherche

 

Rajeev Kumar
Chargé de recherche

 


Laurence Cromer
Ingénieur d'étude


Aurélie Hurel
Technicien

 

Nathalie Vrielynck
Ingénieur d'étude


 

Christelle Taochy
Post-Doctorant

 

Victor Solier
Assistant ingénieur
du 1/3/16 au 28/2/19

 

Mathilde Grelon
Directeur de recherche

Christine Mézard
Directeur de recherche

 

Sylvie Jolivet
Technicien

Aurélie Chambon
Technicien

Laia Capilla Pérez
Post-doctorant
du 1/3/16 au 28/2/19

 

Ludovic Gautier
Assistant ingénieur
du 1/12/16 au 30/9/18

Joiselle Fernandes
Doctorant
du 1/10/14 au 30/9/17

 

Anciens membres
de l'équipe

 

Résumé :

 

Méiose:
La méiose est une étape essentielle du cycle de vie des organismes se reproduisant sexuellement. En effet la méiose est la division cellulaire spécialisée qui réduit le nombre de chromosome par deux, alors que la fécondation restaure le nombre initial de chromosome. La méiose est aussi le lieu de la recombinaison génétique et est donc au cœur de l'hérédité Mendélienne.
Si les évènements se déroulant lors de la méiose ont été amplement décrits, les mécanismes sous-jacents demeurent largement inconnus. De grandes questions restent sans réponse : Pourquoi et comment le taux de recombinaison méiotique est-il très étroitement contrôlé ? Comment sont contrôlées la formation et  la distribution des évènements de recombinaison le long des chromosomes ? Pourquoi les régions péricentromériques sont-elles réfractaires à la recombinaison méiotique ?  Quel est le signal de l'interférence ?  A quoi sert le complexe synaptonémal ? Quels sont les acteurs qui régulent le choix entre chromosomes homologues ou chromatides sœurs pour réparer les cassures double-brins ? Comment sont séparés les chromosomes puis les chromatides lors des divisions méiotiques? Comment sont régulées les deux divisions méiotiques ?
Arabidopsis a émergé comme une modèle majeur dans le domaine de l'étude de la méiose du fait de la possibilité de mener de grands cribles génétiques et de la disponibilité d'un large panel d'outils génétiques, moléculaires et cytologiques.
Nos projets visent à élucider l'ensemble des mécanismes méiotiques. Grâce à des cribles génétiques ciblés, nous identifions de nouveaux acteurs clefs que nous caractérisons par des approches de génétiques, cytogénétiques, biologie moléculaire, biochimie et génomique. Nous contribuons ainsi à une meilleure connaissance de mécanismes biologiques cruciaux à l’œuvre lors de la méiose tels que la recombinaison homologue, le cycle cellulaire ou la distribution des chromosomes. Améliorer notre compréhension de la méiose aura également des répercussions importantes pour l'agriculture et la médecine.


Apomixie:
L'apomixie, ou la reproduction asexuée par graine, produit des descendants génétiquement identiques à leur parent. La maitrise de l'apomixie en agronomie serait une révolution car elle permettrait la propagation par graines à l'identique de n'importe quel génotype élite, y compris des hybrides. Nos projets visent, via la compréhension fine des mécanismes de la reproduction sexuée, et en particulier de la méiose,  à construire l'apomixie de novo.


Résultats marquants :

Les plantes peuvent-elles se passer de sexe ?

Méthodes pour l’obtention de plantes produisant des gamètes 2n et des graines clonales, actualité INRA 20/4/16

Comment dompter le brassage génétique

Comment voulez-vous votre méiose : avec ou sans crossing-over ?

La mutation - Une découverte majeure à partir des mutants d’arabidopsis : mimer l’apomixie

https://scholar.google.fr/citations?user=BKGJoo4AAAAJ&hl=fr

 


Publications représentatives :

Séguéla-Arnaud M, Choinard S, Larchevêque C, Girard C, Froger N, Crismani W, Mercier R. (2016) RMI1 and TOP3a limit meiotic CO formation through their C-terminal domains. Nucleic Acids Res. Dec 13. pii: gkw1210. [Epub ahead of print] PMID: 27965412 (pdf)

Cifuentes, M., Jolivet, S., Cromer, L., et al. (2016) TDM1 Regulation Determines the Number of Meiotic Divisions. PLOS Genet., 12, e1005856. (pdf)

Vrielynck N, Chambon A, Vezon D, Pereira L, ChelyshevaL, De Muyt A, Mézard C, Mayer C, Grelon M. (2016). A DNA topoisomerase VI-like complex initiates meiotic recombination. Science.351(6276):939-43. doi: 10.1126/science.aad5196 (full text) communiqué de presse INRA

Mézard C, Tagliaro Jahns M, Grelon M (2015). Where to cross? New insights into the location of meiotic crossovers. Trends Genet 1–9 (pubmed)

Mercier R, Mézard C, Jenczewski E, Macaisne N, Grelon M. (2015). The Molecular Biology of Meiosis in Plants. Annu Rev Plant Biol 66: 297–327 (pubmed)

Girard, C., Chelysheva, L., Choinard, S., Froger, N., Macaisne, N., Lehmemdi, A., Mazel, J., Crismani, W. and Mercier, R. (2015) AAA-ATPase FIDGETIN-LIKE 1 and Helicase FANCM Antagonize Meiotic Crossovers by Distinct Mechanisms M. Lichten, ed. PLOS Genet., 11, e1005369. (pdf)

Mercier, R., Mézard, C., Jenczewski, E., Macaisne, N. and Grelon, M. (2015) The molecular biology of meiosis in plants. Annu. Rev. Plant Biol., 66, 297–327.

Portemer, V., Renne, C., Guillebaux, A. and Mercier, R. (2015) Large genetic screens for gynogenesis and androgenesis haploid inducers in Arabidopsis thaliana failed to identify mutants. Front. Plant Sci., 6,1–6. (pdf)

Séguéla-Arnaud, M., Crismani, W., Larchevêque, C., et al. (2015) Multiple mechanisms limit meiotic crossovers: TOP3a and two BLM homologs antagonize crossovers in parallel to FANCM. Proc. Natl. Acad. Sci. U. S. A., 112, 4713–4718.

Duroc, Y., Lemhemdi, A., Larcheveque, C., Hurel, A., Cuacos, M., Cromer, L., Armstrong, S.J., Chelysheva, L. and Mercier, R. (2014) The kinesin AtPSS1 promotes synapsis and is required for proper crossover distribution in meiosis. PLoS Genet., 10, e1004674. (pdf)

Girard, C., Crismani, W., Froger, N., Mazel, J., Lemhemdi, A., Horlow, C. and Mercier, R. (2014) FANCM-associated proteins MHF1 and MHF2, but not the other Fanconi anemia factors, limit meiotic crossovers. Nucleic Acids Res., 42, 9087–9095.

Jahns MT, Vezon D, Chambon A, Pereira L, Falque M, Martin OC, Chelysheva L, Grelon M. (2014). Crossover localisation is regulated by the neddylation posttranslational regulatory pathway. PLoS Biol. Aug 12;12(8):e1001930. doi: 10.1371/journal.pbio.1001930. (online)

Jenczewski E, Mercier R, Macaisne N, and Mézard C. (2013). Meiosis: Recombination and the control of cell division. In: Plant Genome Diversity Volume 2: 121-136. Springer-Verlag. I.J. Leitch et al. (Eds)

Uanschou C, Ronceret A, Von Harder M, De Muyt A, Vezon D, Pereira L, Chelysheva L, Kobayashi W, Kurumizaka H, Schlögelhofer P, Grelon M. (2013). Sufficient amounts of functional HOP2/MND1 complex promote interhomolog DNA repair but are dispensable for intersister DNA repair during meiosis in Arabidopsis. Plant Cell 25(12):4924-40. doi: 10.1105/tpc.113.118521. (pubmed)

Mézard C, Macaisne N, Grelon M (2013). La Méiose in La Reproduction Animale et Humaine. Editions Quae _ Éditions Cemagref, Cirad, Ifremer

Chelysheva L, Grandont L, Grelon M (2013). Immunolocalization of meiotic proteins in Brassicacae: method 1 in  Plant Meiosis (eds : Pawlowski W Grelon M and Armstrong S). Series: Methods in Molecular Biology (Series Editor: John M. Walker) 990:93-101. (pubmed)

Pawlowski, W.P.; Grelon, M; Armstrong, S (Eds.) (2013). Plant Meiosis, Methods and Protocols, Series: Methods in Molecular Biology, Vol. 990 XV, 238 p. 52 illus., 28 illus. in color. Humana Press

Drouaud, J, Khademian, J., Giraut, L., and Mézard, C. (2013). Contrasted patterns of crossover and non crossover events at Arabidopsis thaliana meiotic recombination hotspots. PLos Gentics DOI: 10.1371/journal.pgen.1003922 (online)

Cromer, L., Jolivet, S., Horlow, C., Chelysheva, L., Heyman, J., Jaeger, G. De, Koncz, C., Veylder, L. De and Mercier, R. (2013) Centromeric cohesion is protected twice at meiosis, by SHUGOSHINs at anaphase i and by PATRONUS at interkinesis. Curr. Biol., 23, 2090–2099.

Cifuentes, M., Rivard, M., Pereira, L., Chelysheva, L. and Mercier, R. (2013) Haploid meiosis in Arabidopsis: double-strand breaks are formed and repaired but without synapsis and crossovers. PLoS One,8, e72431. (pdf)

Jenczewski, E., Mercier, R., Macaisne, N., and Mezard, C. (2013) Meiosis: Recombination and the Control of Cell Division, in Plant Genome Diversity Volume 2 (Greilhuber, J., Dolezel, J., and Wendel, J. F., Eds.), pp 121–136. Springer Vienna, Vienna

Crismani, W., and Mercier, R. (2013) Plant Meiosis, Plant Meiosis (Pawlowski, W. P., Grelon, M., and Armstrong, S., Eds.), pp 227–234. Humana Press, Totowa, NJ.

Crismani, W., Portemer, V., Froger, N., Chelysheva, L., Horlow, C., Vrielynck, N. and Mercier, R. (2013) MCM8 Is Required for a Pathway of Meiotic Double-Strand Break Repair Independent of DMC1 in Arabidopsis thaliana. PLoS Genet., 9, e1003165. (pdf)

Crismani, W., Girard, C., and Mercier, R. (2013) Tinkering with meiosis., Journal of experimental botany 64, 55–6

Crismani W, Mercier R (2012) What limits meiotic crossovers? Cell cycle (Georgetown, Tex) 11: 3527–3528.

Eloy NB, Gonzalez N, Van Leene J, Maleux K, Vanhaeren H, et al. (2012) SAMBA, a plant-specific anaphase-promoting complex/cyclosome regulator is involved in early development and A-type cyclin stabilization. Proceedings of the National Academy of Sciences of the United States of America 109: 13853–13858.

Crismani W, Girard C, Froger N, Pradillo M, Santos JL, et al. (2012) FANCM limits meiotic crossovers. Science (New York, NY) 336: 1588–1590.

Cromer L, Heyman J, Touati S, Harashima H, Araou E, et al. (2012) OSD1 Promotes Meiotic Progression via APC/C Inhibition and Forms a Regulatory Network with TDM and CYCA1;2/TAM. PLoS genetics 8: e1002865. (pdf)

Yelina NE, Choi K, Chelysheva L, Macaulay M, De Snoo B, Wijnker E, Miller N, Drouaud J, Grelon M, Copenhaver GP, et al (2012). Epigenetic remodeling of meiotic crossover frequency in Arabidopsis thaliana DNA methyltransferase mutants. PLoS genetics 8: e1002844 (online)

Chelysheva L, Vezon D, Chambon A, Gendrot G, Pereira L, Lemhemdi A, Vrielynck N, Le Guin S, Novatchkova M, Grelon M (2012). The Arabidopsis HEI10 is a new ZMM protein related to Zip3. PLoS genetics 8: e1002799 (online)

Giraut, L., Falque, M., Drouaud, J., Pereira, L., Martin, O.C., and Mézard, C. (2011). Genome-wide crossover distribution in Arabidopsis thaliana meiosis reveals sex specific patterns long chromosomes. PLos Gentics DOI: 10.1371/journal.pgen.1002354 (online)

Jenczewski, E., Mercier, R., Macaisne, N., and Mézard, C. (2011). Meiosis : recombination and the control of cell division. Plant génome diversity, ed. J. Greilhuber, J. Wendel, I.J. Leitch and J. Dolezel. Springer-Verlag Wien New York, submitted

Drouaud, J. and Mézard, C. Characterization of meiotic crossovers in pollen from Arabidopsis thaliana (2011). Methods Mol. Biol. 745:223-49. doi: 10.1007/978-1-61779-129-1_14. (pubmed)

Macaisne N, Vignard J, Mercier R*. SHOC1 and PTD form an XPF-ERCC1-like complex that is required for formation of class I crossovers. J Cell Sci. 2011 15;124(Pt 16):2687-91.

Libeau P, Durandet M, Granier F, Marquis C, Berthomé R, Renou JP, Taconnat-Soubirou L, Horlow C. Gene expression profiling of Arabidopsis meiocytes.Plant Biol (Stuttg). 2011 Sep; 13(5):784-93

Marimuthu MP, Jolivet S, Ravi M, Pereira L, Davda JN, Cromer L, Wang L, Nogué F, Chan SW, Siddiqi I, Mercier R. Synthetic clonal reproduction through seeds. Science. 2011 Feb 18;331(6019):876.

Chelysheva L, Grandont L, Vrielynck N, le Guin S, Mercier R, Grelon M. (2010). An easy protocol for studying chromatin and recombination protein dynamics during Arabidopsis thaliana meiosis; immunodetecion of cohesins, histones and MLH1.Cytogenetics and Genome Research. 129:143-153

d'Erfurth, I., Cromer, L, Jolivet, S, Girard, C, Horlow, C, Sun, Y, To, JP, Berchowitz, LE, Copenhaver, GP, and Mercier, R*. The cyclin-A CYCA1;2/TAM is required for the meiosis I to meiosis II transition and cooperates with OSD1 for the prophase to first meiotic division transition. PLoS Genet. 2010. e1000989. (pdf)

d'Erfurth I, Jolivet S, Froger N, Catrice O, Novatchkova M, Mercier R*. Turning Meiosis into Mitosis. PLoS Biol 2009. 7(6): e1000124. (pdf)


Pour en savoir plus:

 

 

  

 


© INRA 2010
retour page d'accueil IJPB